Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Eurasian Journal of Ecology ; 70(1):56-70, 2022.
Article in English | CAB Abstracts | ID: covidwho-2248400

ABSTRACT

In the Republic of Kazakhstan melons and gourds are produced mainly in the traditional way, that is, by using chemical fertilizers and pesticides. The production of environmentally friendly melons is at the initial stage of its development. There is no organic melon growing at all. Considering the huge export potential of melons among other crops cultivated in the country (the total supply of melons and melons on the domestic market is 472%), the great economic and social significance of the transition of the melon industry to organic production is growing. In the future, Kazakhstan may be in the center of attention of the world community as a manufacturer and supplier of environmentally friendly (organic) melons, and environmentally friendly, natural melons may well become a brand of our sovereign state. To do this, it is necessary to make fundamental changes in the melon industry of the country. In general, the transition of agricultural production to an organic direction will contribute to the consumption of the safest and most useful products by the local population. Here, one should also take into account the decrease in the immunity of the human body due to various diseases, including those associated with the coronavirus pandemic. It should also be taken into account that only a limited number of pesticides used against harmful objects in agriculture act as intended, and most of the toxic substances spread into the environment. The use of disinfectants without scientific support has a negative impact on flora and fauna, being deposited in the soil and irrigation system of fields for a long time, thereby causing enormous damage to the environment. Given the above facts, our scientific research was aimed at the selection of pesticides and biological preparations with high biological and economic efficiency, low rates and frequency of treatments, as well as varieties with high resistance to fungal diseases of melons (watermelon, melon). Research work was carried out on the experimental plots of the Regional Branch "Kainar" of the LLP "Kazakh Research Institute of Horticulture" in the period 2020-2021. The studies used classical methods generally accepted in melon growing. The results obtained are new and relevant, and in the future, will contribute to the transition from traditional melon growing to biological.

2.
Canadian Journal of Plant Pathology ; 43(Suppl. 1):S179-S182, 2021.
Article in English | CAB Abstracts | ID: covidwho-2263295

ABSTRACT

Various kinds of field crops growing on two commercial farms in the Whitehorse area of the southern Yukon Territory were surveyed for diseases in summer 2020 by staff of the Agriculture Branch of the Government of Yukon. They included barley, wheat, canola, beets, broccoli, cabbage, carrots, potatoes and turnips. Fields were visited one or more times during July and August. The incidence and severity of diseases were visually assessed on a crop-by-crop basis and samples were collected for laboratory analysis of the pathogens present, if any. Both infectious and non-infectious diseases were present on most crops. The infectious diseases were caused by various species of plant pathogenic bacteria and fungi that were common on these crops growing in other areas of Canada. INTRODUCTION AND METHODS: The 2020 field crop disease survey is believed to be the first organized study of its kind on agricultural crops in the Territory. In his book, "An Annotated Index of Plant Diseases in Canada . . . ", I.L. Conners lists over 300 records of plant diseases on trees, shrubs, herbs and grasses in the Yukon that were published by individuals who were surveying forests and native vegetation mainly for federal government departments, universities and other agencies (Conners 1967). The objectives of the 2020 survey were: (1) to determine the kinds and levels of diseases on selected Yukon crops, (2) to identify the major pathogen species attacking Yukon crops, and (3) to use the results to plan future surveillance activities aimed at helping producers to improve their current disease management programs. All of the fields included in the 2020 survey were situated on two commercial farms, which were designated as Farm #1 and #2, in the Whitehorse area in the southern Yukon (Fig. 1). The crops surveyed included cereals (barley and wheat), oilseeds (canola) and vegetables (beets, broccoli, cabbage, carrots, potatoes and turnips). Fields were visited one or more times in the mid- to late growing season (July/August) at a time when damage from diseases was most noticeable. Symptoms were visually assessed on a crop-by-crop basis by determining their incidence and severity. Incidence was represented by the percentage of plants, leaves, heads, kernels, etc., damaged in the target crop, while severity was estimated to be the proportion of the leaf, fruit, head, root/canopy area, etc., affected by a specific disease as follows: Proportion of the canopy affected based on a 0-4 rating scale, where: 0 = no disease symptoms, 1 = 1-10% of the crop canopy showing symptoms;2 = 11-25% showing symptoms, 3 = 26- 50% showing symptoms, and 4 = > 50% showing symptoms. Photographs of affected plants were taken and sent to plant pathologists across Western Canada for their opinions on causation. Where possible, representative samples of plants with disease symptoms were packaged and sent to the Alberta Plant Health Lab (APHL) in Edmonton, AB for diagnostic analyses. Background information, such as the general cultural practices and cropping history, was obtained from the producers wherever possible. GPS coordinates were obtained for each field to enable future mapping Cereals: Individual fields of barley (11 ha) and wheat (30 ha) located at Farm #1 were surveyed. The barley was a two-row forage cultivar 'CDC Maverick', while the wheat was an unspecified cultivar of Canada Prairie Spring (CPS) Wheat. Plant samples were taken along a W-shaped transect for a total of five sampling points for the barley field (< 20 ha) and ten sampling points for the wheat field (> 20 ha). The first visit, which occurred on July 30, involved visual inspection and destructive sampling wherein plants were collected and removed from the field for a detailed disease assessment at a lab space in Whitehorse. There, the roots were rinsed off and the plants were examined for disease symptoms. The second visit to these fields, which occurred on August 27, only involved visual examination of the standing crop. Oilseeds: A single 40 ha field of Polish canola (cv. 'Synergy') was examined o

3.
Sci Total Environ ; 851(Pt 2): 158284, 2022 Dec 10.
Article in English | MEDLINE | ID: covidwho-2004486

ABSTRACT

Fungal pathogens contribute to significant disease burden globally; however, the fact that fungi are eukaryotes has greatly complicated their role in fungal-mediated infections and alleviation. Antifungal drugs are often toxic to host cells and there is increasing evidence of adaptive resistance in animals and humans. Existing fungal diagnostic and treatment regimens have limitations that has contributed to the alarming high mortality rates and prolonged morbidity seen in immunocompromised cohorts caused by opportunistic invasive infections as evidenced during HIV and COVID-19 pandemics. There is a need to develop real-time monitoring and diagnostic methods for fungal pathogens and to create a greater awareness as to the contribution of fungal pathogens in disease causation. Greater information is required on the appropriate selection and dose of antifungal drugs including factors governing resistance where there is commensurate need to discover more appropriate and effective solutions. Popular azole fungal drugs are widely detected in surface water and sediment due to incomplete removal in wastewater treatment plants where they are resistant to microbial degradation and may cause toxic effects on aquatic organisms such as algae and fish. UV has limited effectiveness in destruction of anti-fungal drugs where there is increased interest in the combination approaches such as novel use of pulsed-plasma gas-discharge technologies for environmental waste management. There is growing interest in developing alternative and complementary green eco-biocides and disinfection innovation. Fungi present challenges for cleaning, disinfection and sterilization of reusable medical devices such as endoscopes where they (example, Aspergillus and Candida species) can be protected when harboured in build-up biofilm from lethal processing. Information on the efficacy of established disinfection and sterilization technologies to address fungal pathogens including bottleneck areas that present high risk to patients is lacking. There is a need to address risk mitigation and modelling to inform efficacy of appropriate intervention technologies that must consider all contributing factors where there is potential to adopt digital technologies to enable real-time analysis of big data, such as use of artificial intelligence and machine learning. International consensus on standardised protocols for developing and reporting on appropriate alternative eco-solutions must be reached, particularly in order to address fungi with increasing drug resistance where research and innovation can be enabled using a One Health approach.


Subject(s)
COVID-19 , Disinfectants , Mycoses , Animals , Humans , Antifungal Agents , Artificial Intelligence , COVID-19/prevention & control , Azoles , Disinfectants/pharmacology , Water , Fungi
4.
Plant Pathology ; 71(1):170-186, 2021.
Article in English | CAB Abstracts | ID: covidwho-1630675

ABSTRACT

The global COVID pandemic has impacted the world in ways and at a scale that few could have predicted, with many industries severely disrupted. Despite this, crops were sown and harvested, food was produced and agriculture continued to function, albeit it with many logistical challenges. Plant health lies at the heart of preventing crop losses through a combination of varietal resistance and agronomic practices. In the case of foliar plant diseases in wheat, varietal resistance plays a key role, but the use of synthetic fungicides is essential to minimize crop losses. European arable production faces a dilemma: how to contribute and maintain global food supplies but at the same time decrease emissions of greenhouse gases (GHGs), reduce inputs potentially harmful to biodiversity, society and the environment while ensuring no more land is brought into production. Throughout history, major disruptions in society have led to big steps in agricultural innovation. Presently, the major disruptive forces in Europe are not just a result of the COVID pandemic but the increasingly urgent need to address climate change. Within the European Green Deal, the Farm-to-Fork strategy is in place to help achieve climate neutrality by 2050, aiming for a reduction of GHG emissions of 55% by 2030. To achieve this, there will need to be a major adjustment to how food is produced, a realignment in plant health strategies and accelerated innovation across the agricultural sector. This paper aims to evaluate how synthetic fungicides presently contribute to plant health (mainly wheat) and food production as well as the management of GHG emissions. In addition, it explores the future challenges and prospects for their positive contribution in achieving global food security alongside emerging innovative technologies.

5.
J Adv Res ; 39: 257-273, 2022 07.
Article in English | MEDLINE | ID: covidwho-1525838

ABSTRACT

BACKGROUND: Despite, a large number of bioactive anthraquinones (AQs) isolated from host-living fungi, only plant-derived AQs were introduced in the global consumer markets. Host-living fungi represents renewable and extendible resources of diversified metabolites to be exploited for bioactives production. Unique classes of AQs from fungi include halogenated and steroidal AQs, and absent from planta are of potential to explore for biological activity against urging diseases such as cancer and multidrug-resistant pathogens. The structural diversity of fungal AQs, monomers, dimers, trimers, halogenated, etc… results in a vast range of pharmacological activities. AIM OF REVIEW: The current study capitalizes on uncovering the diversity and distribution of host-living fungal systems producing AQs in different terrestrial ecosystems ranging from plant endophytes, lichens, animals and insects. Furthermore, the potential bioactivities of fungal derived AQs i.e., antibacterial, antifungal, antiviral (anti-HIV), anticancer, antioxidant, diuretic and laxative activities are assembled in relation to their structure activity relationship (SAR). Analyzing for structure-activity relationship among fungal AQs may facilitate bioengineering of more potential analogues. Withal, elucidation of AQs biosynthetic pathways in fungi is discussed from different fungal hosts to open up new possibilities for potential biotechnological applications. Such comprehensive review unravels terrestrial host-living fungal systems as a treasure trove in drug discovery, in addition to future perspectives and trends for their exploitation in pharmaceutical industries. KEY SCIENTIFIC CONCEPTS OF REVIEW: Such comprehensive review unravels terrestrialhost-living fungal systems as a treasure trove in drug discovery, in addition to future perspectives and trends for their exploitation in pharmaceutical industries.


Subject(s)
Anthraquinones , Fungi , Allergens/metabolism , Animals , Anthraquinones/metabolism , Drug Discovery , Ecosystem , Endophytes/metabolism , Fungi/chemistry , Fungi/metabolism , Plants
SELECTION OF CITATIONS
SEARCH DETAIL